Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe that AIoT is emerging as an essential research field at the intersection of IoT and modern AI. It is our hope that this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.more » « lessFree, publicly-accessible full text available January 31, 2026
-
Truly collaborative scientific field data collection between human scientists and autonomous robot systems requires a shared understanding of the search objectives and tradeoffs faced when making decisions. Therefore, critical to developing intelligent robots to aid human experts is an understanding of how scientists make such decisions and how they adapt their data collection strategies when presented with new informationin situ. In this study, we examined the dynamic data collection decisions of 108 expert geoscience researchers using a simulated field scenario. Human data collection behaviors suggested two distinct objectives: an information-based objective to maximize information coverage and a discrepancy-based objective to maximize hypothesis verification. We developed a highly simplified quantitative decision model that allows the robot to predict potential human data collection locations based on the two observed human data collection objectives. Predictions from the simple model revealed a transition from information-based to discrepancy-based objective as the level of information increased. The findings will allow robotic teammates to connect experts’ dynamic science objectives with the adaptation of their sampling behaviors and, in the long term, enable the development of more cognitively compatible robotic field assistants.more » « less
-
Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
An official website of the United States government
